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A fast Godunov method for the water-hammer problem
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SUMMARY

An e�cient Godunov-type numerical method with second-order accuracy was developed to simulate
the water-hammer problem in piping. The exact solutions of the Riemann problem were analysed and
illustrated on the intriguing solution diagram by properly introducing dimensionless variables within
reasonably practical ranges. Based on the solution diagram, an e�cient fast Riemann solver was also
developed. Moreover, small perturbation analysis was performed to demonstrate the relations between
the primitive variables, velocity and pressure, for the Riemann problem. The typical shock-tube problem
and the water-hammer problem were implemented as sample ones to test the numerical method. It was
shown that the present numerical method incorporated with Van Leer’s �ux limiter is a promising one
to simulate �uid transient problem for piping in the present study. Copyright ? 2002 John Wiley &
Sons, Ltd.

1. INTRODUCTION

Water-hammer is an important aspect in the designs or operations of piping system in power
plants. The diagnoses of the problem are usually done by the aid of numerical method due
to the complexity of the piping system. Method of characteristic (MOC) is one of the most
popular numerical methods that are utilized in the analyses of the water-hammer problem
because of its simplicity. The fundamentals of MOC and many practical applications can be
referenced in the book [1]. Strictly speaking, however, MOC is not suitable to predict wave
propagation correctly, especially for the wave with �nite strength. One of the incentives of the
paper is to develop an e�cient numerical method which could avoid some shortcomings of
MOC, such as the limitation of Courant number being unity, the linearization of the governing
equations and accuracy, etc., at the expense of CPU time. The total e�ciency however, can be
amended by the fantastic progressing computer hardware for practical engineering purposes.
Besides MOC, many numerical methods had been proposed to simulate a variety of water-

hammer problems [2; 3]. However, to capture accurate wave structures and characteristics,
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shock-capturing method by which the Rankine–Hugoniot relation is satis�ed is one of the
alternatives. Among them, the Godunov method is one of the most famous and important
candidates. However, to implement the Godunov method to simulate wave propagation, the
solution for the local Riemann problem at the cell interfaces has to be determined [4]. The
solution of the Riemann problem in the gas dynamics is well understood and can be referred
to the work by Sod [5]. Iterations are always necessary to solve the Riemann problem and
then causes lower numerical e�ciency. Besides developing an e�cient numerical method,
the other incentive of the present paper is to shed light on the fast Riemann solver for
the water-hammer problem because of the simplicity of the governing equations. Under the
properly selected dimensionless parameters, an intriguing solution diagram of the Riemann
problem is proposed to demonstrate all the possible solutions for reasonably practical ranges.
A fast Riemann solver is then constructed from the solution diagram and incorporated into
the Godunov method to improve computational e�ciency. The approximate Riemann solvers
such as the Roe’s and Osher’s schemes are another approach to avoid iterations in solving
the Riemann problem. To validate the present fast Riemann solver, the famous Roe’s scheme
is also utilized to serve this purpose [6].
The contents of this article are arranged as follows: governing equations and characteristic

analysis are brie�y discussed in Section 2, the Godunov method and the Riemann problem in
Section 3. The fast Riemann solver based on the solution diagram is discussed in Section 4.
To get a clear understanding between the pressure and velocity in the Riemann problem,
a small perturbation analysis is also included. The numerical method and error analysis are
discussed in Sections 5 and 6, the test problems and computational results in Section 7, and
�nally conclusions are delivered in Section 8.

2. GOVERNING EQUATIONS AND CHARACTERISTIC ANALYSIS

Considering the mass and momentum equation for one-dimensional horizontal pipe �ow
without friction:

@�
@t
+

@(�u)
@x

=0 (1a)

@(�u)
@t

+
@(�u2 + p)

@x
=0 (1b)

where � is density, u the velocity and p is the pressure, while t and x denotes time and
space, respectively. Equation (1) can be written in the compact form

@U
@t
+

@F
@x
=0 (2)

The vector U contains two conservative variables (�; �u) and the �ux vector F(�u; �u2 +p).
Equation (2) is equivalently represented as

@U
@t
+ A

@U
@x
=0 (3)
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where A≡ @F=@U , is the Jacobian matrix and in the form

A=

(
0 1

c2 − u2 2u

)

where c≡√dp=d� is the sound velocity.
The eigenvalue and eigenvector are easily obtained by diagonalizing the Jacobian matrix

and Equation (3) is then casted into two mutually independent equations as

@W
@t
+�

@W
@x
=0 (4a)

and

�W =R−1�U (4b)

where R is the matrix of eigenvector, � the diagonal matrix of eigenvalue and W is the
characteristic variable. The eigenvalues corresponding to the characteristic variable are wave
speed. As a result, two properties are summarized under the assumption of constant sound
speed:
(1) along the line

dx
dt
= u− c; c ln �− u=constant (5a)

(2) along the line

dx
dt
= u+ c; c ln �+ u=constant (5b)

And, (c ln �−u; c ln �+u) are just the components of the characteristic variable W . However,
the characteristic relations are only appropriate for the smoothing �ow �eld and are no more
valid for the �ow with sharp gradient, shock for instance [6]. Consequently, integral form of
the mass and momentum equations, i.e. the Rankine–Hugoniot relation, shall be applied:

�(�L − �R) = �LuL − �RuR (6a)

�(�LuL − �RuR) = �Lu2L − �Ru2R + pL − pR (6b)

where � is the shock speed, and subscripts L and R indicate the state before and after the
shock wave.

3. THE GODUNOV METHOD AND RIEMANN PROBLEM

The Godunov method can be derived from the conservation form of Equation (2)

Un+1
i =Un

i − �t
�x

(Fi+1=2 − Fi−1=2) (7)
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where Un
i ≡ 1=�x

∫ xi+1=2
xi−1=2

U (x; n�t) dx is de�ned as the space-averaged state variable over the

computational cell (i − 1
2 ; i +

1
2) and Fi+1=2 = 1=�t

∫ (n+1)�t
n�t F(xi+1=2; t) dt the time-averaged

�ux at the interface i + 1
2 . The key element of the numerical scheme is to determine the

�ux at cell interface Fi+1=2. The Godunov’s method divides the domain of �ow �eld into
many computational cells with interfaces at which state variables are discontinuous. Then,
the evolution from the initial discontinuity at interface has to be solved in each time step to
determine the numerical �ux in Equation (7) since

FG
i+1=2 =F(UG

i+1=2)

where G denotes the Godunov method and UG
i+1=2 is the exact solution of Equation (2) with

discontinuous initial conditions. Thus, the Riemann problem for the present case is a model
problem of Equation (2) with initial conditions

U (x; 0)=

{
UL; x¡0

UR ; x¿0

From the characteristic analysis, there are two characteristic lines for the system equations.
It is known that shock results from the intersections of the same set of characteristic lines
from di�erent positions, while expansion fan from the characteristic lines which depart from
each other. Generally speaking, the solutions of the Riemann problem can be split into three
regions of constant states, which are determined by the wave patterns constituted through the
interactions between two sets of characteristic lines. The complete solutions of the Riemann
problem, including intermediate states, shock speed and the states within expansion wave, can
be derived from the characteristic equation and the Rankine–Hugoniot relation [4; 7].
The interactions between the characteristic lines may result in shock or expansion fan and

then there are four types of wave patterns for the Riemann problem as shown in Figure 1:
(I) expansion fan–intermediate state–shock wave, (II) shock wave–intermediate state–shock
wave, (III) shock wave–intermediate state–expansion fan and (IV) expansion fan–intermediate
state–expansion fan. The boundaries of the wave patterns are determined by the appearance
of shock wave or expansion fan. For example, the �rst type (I) and second type (II) of wave
patterns are divided by the disappearance of expansion fan or shock wave on the left-hand
side. That is U∗=UL and the boundary of the �rst type (I) of wave pattern will be

uL − uR
c

6
√

�L
�R

−
√

�R
�L

For the same reason, the �rst type and the fourth type (IV) are separated by U∗=UR and
the boundary is

uR − uL
c

6 ln
�L
�R

Consequently, the ranges of the �rst type of wave pattern are completely de�ned. The ranges
of other wave patterns can also be determined by the same approaches mentioned above. For
convenience, the following dimensionless parameters are de�ned to determine the boundaries
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Figure 1. Four types of wave pattern of the Riemann problem and illustrations
for the fast Riemann solver.

between wave patterns and the intermediate states:

�p= ln
pL
pR
; �u=

uL − uR
c

�∗p = ln
p∗√
pLpR

; �∗u =
u∗ − (1=2)(uL + uR)

c

The intermediate states of the four wave patterns are:

(1) Type I (expansion fan–intermediate state–shock)

2 sinh( 12�
∗
p +

1
4�p) + �∗p − �u − 1

2�p = 0

�∗u =
1
2�u +

1
2�p − �∗p

(11a)

(2) Type II (shock–intermediate state–shock)

�∗p = 2 sinh−1
(

�u
4 cosh((1=4)�p)

)

�∗u = 2cosh( 12 �
∗
p) sinh(

1
4 �p)

(11b)
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(3) Type III (shock–intermediate state–expansion fan)

2 sinh( 12 �
∗
p − 1

4 �p) + �∗p − �u + 1
2 �p = 0

�∗u = − 1
2 �u +

1
2 �p − �∗p

(11c)

(4) Type IV (expansion fan–intermediate state–expansion fan)

�∗p =
1
2 �u

�∗u =
1
2 �p

(11d)

And, the boundaries of wave patterns are:

(1) types I and II

2 sinh( 12 �p)− �u=0 (12a)

(2) types II and III

2 sinh( 12 �p) + �u=0 (12b)

(3) types III and IV

�p − �u=0 (12c)

(4) types IV and I

�p + �u=0 (12d)

To directly illustrate the boundaries and intermediate states of wave patterns, all the possible
solutions of the Riemann problem are rearranged in a solution diagram and demonstrated
in Figure 1 within reasonable ranges of pressure and velocity. Besides the solutions of the
intermediate states, other related solutions such as the propagation speeds of the waves are:

(1) for characteristic line, dx=dt= u− c

shock speed: �̃l = 1
2 �u − e(1=2)�

∗
p −(1=4)�p

speed of the rightmost characteristic line within expansion fan: s̃lr = �∗u − 1
speed of the leftmost characteristic line within expansion fan: s̃ll = 1

2 �u − 1 (13a)

(2) for characteristic line, dx=dt= u+ c

shock speed: �̃r = − 1
2 �u + e

(1=2)�∗p +(1=4)�p

speed of the rightmost characteristic line within expansion fan: s̃rr = 1 + 1
2 �u

speed of the leftmost characteristic line within expansion fan: s̃rl = 1 + �∗u (13b)
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where superscript ∼ denotes dimensionless value and is de�ned as

�̃=
� − (1=2)(uL + uR)

c

In the Riemann problem, the shock wave or expansion fan generating from a single discon-
tinuous interface will not intersect with each other. But they might interact with other waves
from interfaces of neighbour cells in the real numerical problems. To avoid the interactions,
the computational time step �t has to be con�ned within the range

|�|max�t
�x

61

where subscript, max, stands for the maximum eigenvalue of all the interfaces of computation
cells. This is the so-called Courant–Friedrichs–Lewy (CFL) condition and it is well known
that the numerical scheme will be unstable if CFL condition is violated.

4. THE FAST RIEMANN SOLVER

It is obvious that the intermediate states shown in the solution diagram have to be solved by
iterations for Types I and III. Since the solutions of the Riemann problem are necessary for
each interface at all computational cells for the Godunov method, the computational e�ciency
is signi�cantly reduced. To raise the e�ciency, several approaches are proposed and discussed.
The �rst one is recasting the solution diagram of the Riemann problem over practical

ranges into table form. Although the method is very straightforward, it has to utilize additional
computational resources and the e�ciency improved is limited.
The second approach is improving the initial guesses based on the solution diagram. As

shown in Figure 1, iterations are essential only for the �rst and third wave patterns, while
the intermediate states can be directly calculated for Types II and IV. It is also noted that
the region of Type II is located within the range, �u¿0, and the region of Type IV within
the range, �u¡0. As a result, the initial guesses of the iterations for Types I and III can be
chosen as

(i) �u¿0; �∗p =2 sinh
−1
(

�u
4 cosh((1=4)�p)

)

(ii) �u¡0; �∗p =
1
2 �u

Namely, the intermediate state of Type II is implemented as the initial guess if �u¿0, while
that of Type IV is selected if �u¡0. The converged solution can be obtained quickly by the
Newton–Raphson method. The convergence criteria of �∗p in Equation (11) is

|2 sinh( 12 �∗p + 1
4 �p) + �∗p − �u − 1

2 �p|6 10−7∣∣∣∣∣��∗p
�∗p

∣∣∣∣∣6 10−4
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where ��∗p is the di�erence between two successive iterations. Generally speaking, the iteration
number to converge is no more than three if �p63 or pL=pR620.
The third approach, which is the most e�cient one, is proposed hereafter. To illustrate the

interesting properties of the solution diagram some dimensionless parameters are introduced
and rede�ned:

�p(p1; p2) = ln
p1
p2
; �u(u1; u2)=

u1 − u2
c

�p;LR = �p(pL; pR); �p;∗R= �p(p∗; pR); �p;L∗= �p(pL; p∗)

�u;LR = �u(uL; uR); �u;∗R= �u(u∗; uR); �u; L∗= �u(uL; u∗)

It is to be noted that there exists a relationship

�p;LR = �p;L∗ + �p;∗R; �u;LR = �u;L∗ + �u;∗R

which can also be represented in a vector form,

�̃LR = �̃L∗ + �̃∗R (14)

where �̃LR = (�p;LR ; �u;LR). So vector addition property can apply on the solution diagram if
the dividing lines of the wave patterns are chosen as co-ordinates. Consequently, new state
variables are rede�ned as

�e = �p + �u; �c=2 sinh
(�p
2

)
+ �u

�e = �p − �u; �c=2 sinh
(�p
2

)
− �u

and illustrated as

�e =0; left-going expansion fan;

�c =0; left-going shock wave;

�e =0; right-going expansion fan;

�c =0; right-going shock wave

and

�e =0 and �c=0 represent the vector �̃L∗

�e =0 and �c=0 represent the vector �̃∗R

Due to the property of vector addition, Equation (14), any state on the solution diagram, �̃LR,
can be represented by two states on the lines �=0 and �=0. For example, the states of point
P in the region of Type I can be divided into two components of point Q and R on the �e=0
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and �e=0, respectively, as shown in Figure 1,

�̃P = �̃R + �̃Q

if the area surrounded by points ORPQ is parallelism. Similarly, point P′ can be represented
by R and Q:

�̃P′ = �̃R + �̃Q′

Since P and P′ lie on the line, �e= �p + �u=constant, they will yield the same intermediate
states if their right states are the same. As a result, the intermediate states can be determined
by the following relations:

2 sinh( 12 �p;∗R)− �u;∗R = 0

�p;∗R + �u;∗R = �p;LR + �u;LR = �e;LR

or

2 sinh( 12 �p;∗R) + �p;∗R = �e;LR

In this way, a state net for any �̃LR can be constructed on the solution diagram and the
solutions of the Rieman problem can be easily obtained. Based on the present analysis and
previous results, the resulting intermediate states are determined by, according to the wave
patterns,

(1) Type I

2 sinh( 12 �p;∗R) + �p;∗R = �e;LR = �p;LR + �u;LR

(2) Type II

�∗p =2 sinh
−1
[

�u;LR
4 cosh((1=4)�p;LR)

]

(3) Type III

2 sinh( 12 �p;L∗) + �p;L∗= �e;LR = �p;LR + �u;LR

(4) Type IV

�∗p =
1
2 �u;LR

For the fast Godunov method, iteration is still necessary to solve the intermediate states for
the cases of Types I and III. The general form of the equation is written as

f(x)= x + 2 sinh
(x
2

)
− y

where y is given and x unknown. The initial guess is determined by the following third-order
approximation,

f3(x)=2x0 + 1
24 x

3
0 − y=0
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and the second-order Newton–Raphson method is implemented,

f(x)=f(x0) + f′(x0)(x − x0) + 1
2 f

′′(x0)(x − x0)2 =0

with

f′(x) = 1 + cosh
(x
2

)

f′′(x) =
1
2
sinh

(x
2

)

The iteration number of the present so called fast Riemann solver for the convergence criteria
being f(x)¡10−7 is tested and summarized:

(1) y¡0:3, no iteration required,
(2) y¡5, one iteration required,
(3) y¡20, two iterations required.

It is worth noting that the range for y¡20 almost covers all the ranges of practical problem,
since y≡ �e;LR ≡ �p;LR + �u;LR or y≡ �e;LR ≡ �p;LR − �u;LR.
Due to the non-linearity of the Riemann problem it is di�cult to describe the interactions

among �ow variables very clearly. However, the purposes can be achieved by linearizing the
Riemann problem under the circumstances, �u ≈ �p�1.
It is interesting to discover that the approximate solutions of all wave patterns with second-

order accuracy are the same and the approximate intermediate states of the Riemann

Figure 2. Approximate solution by small perturbation: (a) along �u; (b) along �p.
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problem are:

�∗ =
√
�L�R(1 + 1

2 �u +
1
8 �

2
u) (15a)

u∗ = 1
2(uL + uR) + 1

2 c�p (15b)

The density (or pressure) is only dependent on the perturbation of velocity (�u) while the
velocity on the perturbation of density (�p), if the reference states are known. If

√
�L�R

is de�ned as the reference density of intermediate state, the term (1 + 1
2 �u +

1
8 �

2
u) can be

considered as the compressibility e�ect resulting from the change of velocity; if 12 (uL +uR) is
de�ned as the reference velocity, the term (12 c�p) can be considered as the increment resulting
from the change of density (or pressure). The comparisons between the intermediate states by
small perturbation and exact solution are shown in Figure 2, and the error is not signi�cant
if �p and �u are less than 0.5.

5. NUMERICAL METHODS

It is well known that the Godunov method can be generalized to an algorithm that takes
three independent steps (reconstruct, solve, average) in each time step. To achieve higher-
order accuracy a better reconstruction such as linear function instead of piecewise constant
is applied in the �rst step of the Godunov method. However, higher-order linear di�erence
schemes will inevitably induce numerical oscillations. To avoid numerical oscillations several
non-linear di�erence schemes with �ux limiter such as the minmod, superbee and Van Leer
schemes are tested and Van Leer Scheme shows the best performance in the single-equation
case [7]. The general functional form of di�erence schemes can be represented as

 Li+1=2 =  (rLi+1=2);  Ri+1=2 =  (rRi+1=2)

in which rLi+1=2 and rRi+1=2 are de�ned as

rLi+1=2 =
ui+1 − ui

ui − ui−1
; rRi+1=2 =

ui − ui+1

ui+1 − ui+2

So, the �rst-order upwind scheme (1UD) is  (r)=0 and the general linear second-order
di�erence scheme is

 (r)=
1 + �
2

r +
1− �
2

where � is constant, �=−1 represents the central di�erence scheme (CD), for instance. And
the functional form of the Van Leer scheme with limiter is represented as

 Van(r) = max{0;min[ 12 (1 + r); 2; 2r]}

The detail derivations of the present numerical method will be omitted since the Godunov-
type high-resolution schemes can be easily found in the book [4]. The di�erence scheme for
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system equations, Equation (2), can be written as

Ũi+1=2;L =Un
i +

1
2

(
I − �t

�x
Ai

)
�Li+1=2(U

n
i −Un

i−1); (16a)

Ũi+1=2;R =Un
i+1 +

1
2

(
I +

�t
�x

Ai+1

)
�Ri+1=2(U

n
i+1 −Un

i+2) (16b)

Un+1
i =Un

i − �t
�x

[FN (Ũi+1=2;L; Ũi+1=2;R)− FN (Ũi−1=2;L; Ũi−1=2;R)] (16c)

where I is unit matrix and �Li+1=2 and �
R
i+1=2 are limiter matrix of �ux vector, which have the

same functional form as that of single equation,

�(r�; r�u)=

(
 (r�) 0

0  (r�u)

)
(16d)

For a Riemann solver to be called fast it has to be comparable to the popularly used
approximate Riemann solver which get rid of iterations for the solution of the Riemann
problem. Among them, Roe scheme is one of the most popular schemes in the gas dynamics.
As a result, Roe scheme is utilized and formulated for the present water-hammer problem
with the numerical �ux being [7]

FRi+1=2 =
1
2(F(UL) + F(UR))− 1

2 R̂|�̂|R̂
−1
(UR −UL)

where the superscript R stands for the Roe scheme, R̂ and �̂ are the eigenvector and eigenvalue
matrix of the approximately constructed Jacobian matrix Â, respectively. The construction of
approximate Jacobian matrix Â from A has to satisfy the Rankin–Hugoniot relation, consistency
and hyperbolicity and can be referenced in Reference [4].

6. ERROR ANALYSIS

The error analysis can be performed by using the Von Neumann method to validate that the
numerical method is second-order accuracy in space and time. For convenience, G=�u is
de�ned in the derivations. Considering the general linear second-order di�erence scheme, the
propagation of small perturbation of the numerical method would be(

��n+1
i

�Gn+1
i

)
=

(
a�� a�G

aG� aGG

)(
��n

i

�Gn
i

)
(17)

where

a�� =1− c�t
2�x

(1−M 2)(−D+ 2−D−1 +Ds) +
c2�t2

2�x2
(1−M 2)(MDa +Ds)
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a�G =− �t
2�x

[M (−D+ 2−D−1 +Ds) + (D −D−1 +Da)]

+
c�t2

2�x2
[(1 +M 2)Da + 2MDs)

aG� = c2(1−M 2)a�G

aGG =1− c�t
2�x

[(1 +M 2)(−D+ 2−D−1 +Ds) + 2M (D −D−1 +Da)]

+
c2�t2

2�x2
[(1 + 3M 2)Da +M (3 +M 2)Ds)]

in which M = u0=c and the di�erence operators D; Da and Ds are

D��i = ��i+1

Da =
1− �
4

(−D2 + 2D − 2D−1 +D−2)

Ds = 1
4[2(1 + �)(D − 2 +D−1) + (1− �)(D2 − 2D+ 2− 2D−1 +D−2)]

By transforming the di�erence operations into di�erential relations based on the principle of
Tailor expansion, the derived modi�ed equations are

@��
@t

+
1
2

@2��
@t2

�t +
1
6

@3��
@t3

�t2 − c2�t
2

(1−M 2)
[
@2��
@x2

− M (1− �)
2

@3��
@x3

�x
]

+
@�G
@x

+
−1 + 3�
12
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With the relations

@2�U
@t2

=A2
@2�U
@x2

the truncation error of the numerical method are easily obtained
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in which HOT denotes higher-order term. For the 1UD, the truncation error of the numerical
method would be, as expected, �rst-order in accuracy

TE� =
c
2
(1−M 2)(c�t −�x)

@2��
@x2

+M
(
c�t − �x

2

)
@2�G
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2
(c�t −�x)

@2��
@x2

+
c(1 +M 2)

2
cM

(
1 + 3M 2

1 +M 2 c�t −�x
)

@2�G
@x2
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7. TEST PROBLEMS AND COMPUTATIONAL RESULTS

To test the developed numerical method, two sample problems are investigated. One is the
typical Riemann problem: a valve, by which two discontinuous states are separated in a pipe, is
opened abruptly and the other is the water-hammer problem: the propagation of pressure wave
is simulated in a pipe with the valve at downstream being opened and closed periodically.
Moreover, some sensitivity studies such as the e�ects of pressure strength and time step are
also performed to examine the di�erence schemes.
For demonstrations, the second type of the Riemann problem is taken into account. The

computational cells are set to N =200, and sound speed c=1. The initial conditions of
Riemann problem are set to be

p=1; u=0; if x¡0

p=1; u=−1 if x¿0

Two out-going shocks will be formed in this circumstance. Figure 3 shows the computational
results at t=0:25 with Cr =0:5 for the 1UD, CD and Van Leer schemes, respectively. The
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Figure 3. Distribution of pressure and velocity with Cr =0:5 for the Riemann problem of wave
pattern type II by: (a) 1UD; (b) CD; and (c) Van Leer.

Courant number, Cr, is de�ned as

Cr =
|�|max�t
�x

It is noted that the agreements are well for the right-going shock but signi�cant dissipation
can be found for the left-going shock by using the 1UD scheme (Figure 3(a)). There are
serious oscillations before and after the shock for the CD but the simulation results by the
Van Leer scheme are quite well. All the schemes, linear or non-linear, are able to obtain
the same wave speed and the intermediate state of the Riemann problem, which means the
Rankine–Hugoniot relation is satis�ed. Generally, the results show similar characteristics of
the di�erence schemes as observed in the gas dynamics.
The other test problem is to simulate the water-hammer in a pipe by closing and opening

of valve at downstream. The pressure waves caused by the action of the valve then start
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Figure 4. Schematic diagram of wave-form propagating on the x–t plane.

to propagate toward upstream along the pipe. The time-dependent pressure boundary condi-
tion is assumed to be a square wave at downstream valve position, x=10. Figure 4 shows
the schematic diagram of the waveform propagating on the x–t plane. The thick solid lines
represent the shock wave caused by valve closing, while the shadow regions the expansion
fans caused by valve opening. Since the speed of shock and expansion fans are di�erent,
shock and expansion fan will get closer and expansion fan will expand wider as the waves
propagate along the pipe. The horizontal dotted line in the �gure explains the distribution of
the waves for a speci�ed time. In the calculation, sound speed is set to c=1, computational
cells N =200 and period of pressure variation 30�x=c.
Figure 5 illustrates the results with �p=0:01 and Cr =1:0 for the schemes of 1UD, CD

and Van Leer, respectively. The solid line shown in the �gures is a reference result by the
MOC. It is noted that the speed of expansion fan and shock are the same and the MOC
makes no di�erences between expansion fan and shock. The exact solutions (dash line) for
this problem are also calculated to benchmark the results. The results show that the Godunov
method, incorporated with Van Leer scheme, can tell the di�erences between expansion fan
and shock e�ectively even when the strength of pressure is only 0.01. The strength of shock
sustains but the gradient of expansion fan is gradually reduced as the wave propagate, which
is the same case as shown in Figure 4. The strength predicted by the 1UD is dissipated a little
because there is more numerical dissipation inherent in the scheme as shown in Figure 5(a).
CD is expected to have oscillation after sharp gradient because of phase lagging as shown
in Figure 5(b). Van Leer scheme predicts shock and expansion fan accurately as shown
in Figure 5(c). These results are consistent with the previous discussions for the Riemann
problem in gas dynamics. Figure 6 shows similar results for the cases with Cr =0:5.
Moreover, the e�ects of the strength of pressure variation are considered. Similar computa-

tional results with �p=0:1 and Cr =1:0 for the 1UD, CD and Van Leer scheme are shown
in Figure 7. Again, because of numerical dissipation in the 1UD scheme, expansion wave and
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Figure 5. Simulation results of water-hammer with �p=0:01, Cr =1:0 by:
(a) 1UD; (b) CD; and (c) Van Leer.

shock become coupled and the amplitude is signi�cantly reduced as shown in Figure 7(a).
Figure 7(b) shows the oscillations predicted by the CD and the oscillation amplitude is in-
creased as the pressure variation increased. The simulation case with �p=0:1 and Cr =0:5
is also performed to demonstrate the e�ects of time step as shown in Figure 8. It shows that
the Van Leer scheme agrees well with the exact solution, especially for the shock speed and
the expansion behaviour of expansion wave. Other phenomena are the same as that for the
case of �p=0:1 and it is summarized that 1UD and CD are not able to predict the wave
propagation accurately under the present conditions. Therefore, to obtain reasonably accurate
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Figure 6. Simulation results of water-hammer with �p=0:01, Cr =0:5 by:
(a) 1UD; (b) CD; and (c) Van Leer.

simulation results for the water-hammer problem, non-linear second-order di�erence schemes
with �ux limiter such as Van Leer scheme could be a candidate to be implemented.
To benchmark the computational e�ciency of the present fast Riemann solver, the arithmetic

operation numbers for each cell are counted for the programs coded by Roe’s scheme and the
present one. The statistical results are shown in Table I. It shows that the present Godunov
method has a few more arithmetic operations like division, addition and exponential but
far less operation of multiplication is needed. A typical �uid transient problem, which is
initially steady and induced by quickly closing valve at downstream in a reservoir-pipe-valve
system, is simulated for 100 s to test the required CPU time. The results show it takes
22:46 s for the present exact Riemann solver and 21:92 s for the Roe’s approximate Riemann
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Figure 7. Simulation results of water-hammer with �p=0:1, Cr =1:0 by:
(a) 1UD; (b) CD; and (c) Van Leer.

solver. Generally speaking, the present Godunov method requires a little more arithmetic
operation and CPU time but is able to get more accurate computational results than Roe’s
scheme.

8. CONCLUSIONS

An e�cient Godunov-type numerical method with second-order accuracy to simulate water-
hammer problem for piping are developed in this paper. An intriguing solution diagram of
the Riemann problem for the water-hammer equations is proposed with the properly selected
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Figure 8. Simulation results of water-hammer with �p=0:1, Cr =0:5 by:
(a) 1UD; (b) CD; and (c) Van Leer.

Table I. Comparisons of arithmetic operation numbers between Roe
scheme and the present numerical method.

+ − ∗ = √ Log Exp

Roe 14 12 32 4 2 0 0
Present 12 15 18 9 2 2 6
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dimensionless parameters (�u; �p) being co-ordinates. On the solution diagram, any states can be
constituted by vector addition based on the lines �=0 and �=0 being axis (Equation (14)).
Furthermore, based on the solution diagram and the property of vector addition, the fast
Riemann solver can be constructed for reasonably practical ranges with limited iterations
and expected to be comparable to the Roe’s method in e�ciency. Moreover, it is shown
that the intermediate state of density (or pressure) is only dependent on the perturbation
of velocity, while the velocity on the perturbation of density by small perturbation analysis
(Equation (15)). Some linear and non-linear second-order di�erence schemes are incorporated
into the numerical method as had been done in gas dynamics to test the suitability. Van
Leer scheme is shown to be the best one in the present study, which is similar to previous
experiences.
The approaches developed in the present study can be extended to solve the Riemann

problem for gas dynamics in which there are three governing equations instead of two, and
the paper will appear in the near future.
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